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Abstract
Let G = (V,E) be a simple graph with vertex set V and edge set E. Amixed double Roman dominating function (MDRDF)

of G is a function f : V ∪ E → {0, 1, 2, 3} satisfying the condition every element x ∈ V ∪ E for which f(x) = 0, is adjacent or
incident to at least two elements y,y ′ ∈ V ∪ E for which f(y) = f(y ′) = 2 or one element y ′′ ∈ V ∪ E with f(y ′′) = 3, and if
f(x) = 1, then element x ∈ V ∪E must have at least one neighbor y ∈ V ∪E with f(y) ⩾ 2. The mixed double Roman dominating
number of G, denoted by γ∗dR(G). The weight of a MDRDF f is w(f) =

∑
x∈V∪E

f(x). The mixed double Roman domination

number of G is the minimum weight of a mixed double Roman dominating function of G.
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1. Introduction

In this paper, G is a simple graph with vertex set V = V(G) and edge set E = E(G). The order |V | of
G is denoted by n = n(G). For every vertex v ∈ V, the open neighborhood of v is the set N(v) = {u ∈
V(G) : uv ∈ E(G)} and the closed neighborhood of v is the set N[v] = N(v) ∪ {v}. The degree of a vertex
v ∈ V is degG(v) = |N(v)|. The minimum and maximum degree of a graph G are denote by δ = δ(G) and
∆ = ∆(G), respectively. The Open neighborhood of a set S ⊆ V is the set N(S) =

∪
v ∈ SN(v), and the

closed neighborhoodof S is the set N[S] = N(S)∪ S. For any x ∈ V ∪ E, we denote by Nm(x) = {y ∈ V ∪ E:
y is either adjacent or incident with x}, and Nm[x] = Nm(x)∪ {x}. A fan graph F1,n is defined as the graph
K1 + Pn, where K1 is the empty graph on one vertex and Pn is the path graph on n vertices. A set of
vertices S in a graph G is dominating setof G if N[S] = V, that is, every vertex in V \ S is adjacent to a
vertex in S. The domination number γ(G) is the minimum cardinality of a dominating set of G. A more
general version of domination, where each element x ∈ V ∪ E dominates Nm[x], is mixed domination, see
for examples [8, 11, 12]. For a mixed dominating set S ⊆ V ∪ E, every element in denote γ∗(G), of G is
minimum cardinality of any mixed dominating set of G. A mixed dominating set is also called a total cover
in [9, 10].
A mixed Roman dominating functionMRDF on a graph G is defined by Ahangar, Haynes and Tripodoro in
[7] as a function f : V ∪ E −→ {0, 1, 2} satisfying the condition every element x ∈ V ∪ e for which f(x) = 0 is
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adjacent or incident to at least one element y ∈ V ∪ E for which f(y) = 2. The weight, ω(f), of f is defined
as f(V(G)). The mixed Roman domination number of a graph G, denoted by γ∗

R(G), is the minimum weight
of any mixed Roman dominating function of G. ( for example [2, 3] ).
A double Roman dominating function on a graph G is defined by Beeler, Haynes and Hedetniemi in [7] as a
function f : V −→ {0, 1, 2, 3} having the property that if f(u) = 0, then vertex u has at least two neighbors
assigned 2 under f or one neighbor w with f(w) = 3, and if f(u) = 1, then vertex u must have at least one
neighbor w with f(w) ⩾ 2. The weight, ω(f), of f is defined as f(V(G)). The double Roman domination
number of a graph G, denoted by γdR(G), is the minimum weight of any double Roman dominating function
of G. Further results on the double Roman domination number can be found in [7, 1].
A Edge double Roman dominating function(EDRDF) of graph G is defined by Valinavaz in [4, 5, 6]as function
f : E(G) −→ {0, 1, 2, 3} having the property that if f(e) = 0, then edge e has at least two neighbors assigned
2 under f or one neighbor e ′ with f(e ′) = 3, and if f(e) = 1, then edge e must have at least one neighbor
e ′ with f(e ′) ⩾ 2. The weight of an edge double Roman dominating number of f, denote by ω(f), is the
value

∑
e∈E(G) f(e). The weight of a EDRDF,

∑
e∈E(G) f(e). The minimum weight of a EDRDF is the edge

double roman domination number of G, denoted by γedR(G).
We introduce the mixed version of double Roman domination as follows. Given a graph G, a mixed double

Roman dominating function (MDRDF) of G is a function f : V ∪ E → {0, 1, 2, 3} satisfying the condition
every element x ∈ V ∪E for which f(x) = 0, is adjacent or incident to at least two elements y,y ′ ∈ V ∪E for
which f(y) = f(y ′) = 2 or one element y ′′ ∈ V ∪ E with f(y ′′) = 3, and if f(x) = 1, then element x ∈ V ∪ E

must have at least one neighbor y ∈ V ∪ E with f(y) ⩾ 2. The mixed double Roman dominating number
of G, denoted by γ∗

dR(G). The weight of a MDRDF f is w(f) =
∑

x∈V∪E

f(x). The mixed double Roman

domination number of G is the minimum weight of a mixed double Roman dominating function of G. A
MDRDF with minimum weight is called a γ∗

dR-function on G. Each MDRDF determines a partition of the
set V ∪ E = (V0 ∪ E0)∪ (V1 ∪ E1)∪ (V2 ∪ E2)∪ (V3 ∪ E3), where Vi ∪ Ei = {x ∈ V ∪ E : f(x) = i}. For the sake
of simplicity, we will denote by f[x] = f(Nm[x]) =

∑
v∈Nm[x]

f(v), for all x ∈ V ∪E. Let G be a graph. Suppose

T(G) is the graph whose vertex set is V ∪ E and two vertices in T(G) are adjacent if and only if they are
adjacent or incident in G. The proof of the following result is straightforward and therefore omitted.
Observation 1. For any graph G,

γ∗
dR(G) = γdR(T(G)) and γ∗(G) = γ(T(G))

Problem 1. For n ⩾ 2, γdR(Kn) = 3
Problem 2. For a complete graph Kn with n ⩾ 4, γedR(G)(Kn) = n if n is even, and γedR(G)(Kn) = n+ 1
if n is odd.

2. Basic Properties

Proposition 1. For any graph G, there exists a γ∗
dR(G)-function such that no edge and vertex needs to be

assigned the value 1.
Proof. Let f be a γ∗

dR-function on a graph G. Suppose that for some x ∈ E∪ V, f(x) = 1. This means that
there is a element x ′ ∈ N(x), such that either f(x ′) = 2 or f(x ′) = 3. If f(x ′) = 3, then we can achieve a
mixed double Roman dominating function by reassigning a 0 to x. This results in a function with strictly less
weight than f, contradicting that f is a γ∗

dR-function of G. If f(x ′) = 2, then we can create a mixed double
Roman domination function g defined as follows: g(x) = f(x) for all x /∈ {x, x ′},g(x) = 0, and g(x ′) = 3.
This result in a mixed double Roman domination function with weight equal to f.

By Proposition 1, for any mixed double Roman dominating function f ′, there exists a mixed double
Roman dominating function f no greater weight than f ′ for which V1 ∪ E1 = ∅. Henceforth, without loss of
generality, in determining the value γ∗

dR(G) for any graph G, we can assume that E1 ∪V1 = ∅ for all mixed
double Roman dominating functions under consideration.
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Observation 2. Let f = (V0 ∪ E0,V1 ∪ E1,V2 ∪ E2,V3 ∪ E3) be a MDRDF of a graph G. Then the following
holds.

(a) Every element in V0 ∪ E0 is dominated by some element of V3 ∪ E3 or at least two elements of V2 ∪ E2.

(b) w(f) = 2|V2 ∪ E2|+ 3|V3 ∪ E3|.

(c) V2 ∪ V3 ∪ E2 ∪ E3 is a mixed dominating set in G.

(d) It is not difficult to check that∑
v∈V

f[v] +
∑

e=uw∈E

f[e] =
∑
v∈V

f(Nm[v]) +
∑

e=uw∈E

f(Nm[e])

=
∑
v∈V

(2d(v) + 1)f(v)

+
∑

e=uw∈E

(d(u) + d(w) + 1)f(uw).

A classic result from [7] gives the following bounds on the double Roman dominating number of a graph
G in terms of its domination number: 2γ(G) ⩽ γdR(G) ⩽ 3γ(G). We show that an analogous result applies
for the mixed version as well.

Proposition 2. For any graph G,

2γ∗(G) ⩽ γ∗
dR(G) ⩽ 3γ∗(G)

Proof. For the lower bound, let f = (V0 ∪E0,V2 ∪E2,V3 ∪E3) be a γ∗
dR-function of a graph G. Let S ⊆ V ∪E

be a γ∗(G)-set. Note that (∅, ∅,S) is a mixed double Roman dominating function. This yields the upper of
γ∗
dR(G) ⩽ 3γ∗(G). On the other hand, by Observation 2(c), V2 ∪ E2 ∪V3 ∪ E3 is a mixed dominating set for

G. Thus, γ∗(G) ⩽ |V2 ∪ E2|+ |V3 ∪ E3|. We can obtain the lower bound,

γ∗
dR(G) = 2|V2 ∪ E2|+ 3|V3 ∪ E3| ⩾ 2(|V2 ∪ E2|+ |V3 ∪ E3|) ⩾ 2γ∗(G).

Both the bounds of Proposition 2 are sharp. For the upper bound, as we have seen, the family of
non-trivial stars K1,n−1 has γ∗(K1,n−1) = 1 and γ∗

dR(K1,n−1) = 3. For the lower bound, we also recall the
empty graph Kn, has γ∗(Kn) = 1 and γ∗

dR(Kn) = 2 A graph G is said to be a double Roman graph if
γdR(G) = 3γ(G). Similarly, we say that a graph G is a mixed double Roman graph if γ∗

dR(G) = 3γ∗(G).

Proposition 3. A graph G is mixed double Roman graph if and only if it has a γ∗
dR-function f = (V0 ∪

E0,V2 ∪ E2,V3 ∪ E3) with |V2 ∪ E2| = 0.

Proof. Let f be a γ∗
dR-function on G with |V2 ∪E2| = 0. Taking into account that V2 ∪E2 ∪V3 ∪E3 = V3 ∪E3

is a mixed dominating set in G and that γ∗
dR(G) = w(f) = 2|V2 ∪ E2|+ 3|V3 ∪ E3| = 3|V3 ∪ E3|, it is derived

that γdR(G) = 3γ(G). Thus, G is a mixed double Roman graph.
Conversely, assume that G is a mixed double Roman graph, that is, γdR(G) = 3γ(G). Let X ⊆ V ∪ E be
a mixed dominating set in G and define a MDRDF f as follows: f(X) = 3 for every x ∈ X and f(x) = 0,
otherwise. Clearly, f is a γ∗

dR-function on G such that |V2 ∪ E2| = 0.

We observe that γ∗
dR(G) = 2 if and only if G is the trivial graph K1. We conclude the section by

considering graphs having small mixed double Roman domination numbers.

Proposition 4. Let G be a connected graph of order n ⩾ 2. Then

1. γ∗
dR(G) = 3 if and only if G = K1,n−1.

2. γ∗
dR(G) = 4 if and only if G = {K2,K3}.
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3. γ∗
dR(G) = 5 if and only if G = {K1,n−2 ∪K1,K1,n−1 + e}.

Proof. Let f = (V0 ∪ E0,V1 ∪ E1,V2 ∪ E2,V3 ∪ E3) be a γ∗
dR-function of G such that V1 ∪ E1 = ∅(by Propo-

sition 1).

1. If G ∈ K1,n−1, then clearly γ∗
dR(G) = 3. Conversely, let γ∗

dR(G) = 3, it follows that |V3 ∪ E3| = 1 and
V2 ∪ E2 = ∅. In the former case, we deduce that G = K1,n−1.

2. If γ∗
dR(G) = 4, then |V2 ∪ E2| = 2 and V3 ∪ E3 = ∅. Thus, we may assume that V2 ∪ E2 = {x,y}. If G

is disconnected, then G ∈ K2. Hence, we may assume that G is connected. Then x,y dominated all
the elements of (V ∪ E), implying that y ∈ V2 and x ∈ E2. It follows that G = K3. The converse is
obvious.

3. Assume that γ∗
dR(G) = 5. We deduce from 2|V2 ∪ E2|+ 3|V3 ∪ E3| = 5 that |V2 ∪ E2| = |V3 ∪ E3| = 1.

Thus, we may assume that V2 ∪E2 = {x} and V3 ∪E3 = {y}. If G is disconnected, then G ∈ K1,n−2 ∪K1
for n ⩾ 3 and the result holds. Hence, we may assume that G is connected. Then y dominated all the
elements of (V ∪ E)\{x}, implying that y ∈ V3 and x ∈ E2. It follows that G = K1,n−1 + e for n ⩾ 3.
The converse is obvious.

3. Bounds On the Mixed Double Roman Domination Number

Lemma 1. Let f be a γ∗
dR-function on a graph G. If f[e] = f(Nm[e]) = 2 for some edge e = uv, then there

exist at least d(u) + d(v) − 2 ⩾ 2 edges e ′ for which f[e ′] ⩾ 4.

Proof. Let e = xy be an edge satisfying the conditions of the lemma. As f[e] = 2, we may deduce that
f(xy) = 2 and that f(x) = f(y) = f(xx ′) = f(yy ′) = 0, for all x ′ ∈ N(x) and y ′ ∈ N(y). Since f is a MDRDF,
it follows that for f to dominate x(respectively, y), d(x) ⩾ 2 (respectively, d(y) ⩾ 2). Since f(xx ′) = 0 for
all x ′ ∈ N(x), either f(x ′) = 2 or there exists a vertex t ∈ N(x ′)\{x} for which f(x ′t) = 3 to dominate xx ′.
In any case, it is derived that f[xx ′] ⩾ f(xy) + f(x ′t) ⩾ 4 for all x ′ ∈ N(x)\{y}. Reasoning analogously,
we may conclude that f[yx ′] ⩾ f(xy) + f(x ′t) ⩾ 4 for all x ′ ∈ N(y)\{x}. Summing up, there are at least
d(x) + d(y) − 2 ⩾ 2 edges e ′ such that f[e ′] ⩾ 4.

Lemma 2. Let f be a γ∗
dR-function on a graph G with no isolated vertices. If f[v] = 2 for some v ∈ V, then

f[v ′] ⩾ 4 for all v ′ ∈ N(v).

Proof. Assume that f[v] = 2. Thus, f(v) = 2 and f(x) = 0 for all x ∈ Nm(v). Since G has no isolated
vertices, d(v) ⩾ 1. Let v ′ ∈ N(v). Since f is a MDRDF, there is an element x ′

v ∈ N(m)(v ′) with f(xv ′) = 3.
Therefore, f[v ′] ⩾ f(v ′) + f(v) + f(x ′

v) = 0+ 2+ 3 = 5.

Next we give a lower bound on the mixed double Roman domination number of a graph in terms of its
order, size, and maximum degree.

Proposition 5. Let G be a graph of order n, size m, and maximum degree ∆ ⩾ δ ⩾ 1. Then

γ∗
dR(G) ⩾ ⌈3(m+n)

2∆+1 ⌉.

Proof. Let f be a γ∗
dR−MDRDF in G. Note that for any element x ∈ V0 ∪E0 ∪V2 ∪E2 ∪V3 ∪E3, we have that

f[x] ⩾ 3. Combining this with Observation 2, Lemma 1and Lemma 2, we obtain that
∑
e∈E

f[e] ⩾ 3|E| = 3m
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and
∑
v∈V

f[v] ⩾ 3|V | = 3n. Therefore,

3(m+n) ⩽
∑
v∈V

f[v] +
∑

e=uv∈E

f[uv]

=
∑
v∈V

(2d(v) + 1)f(v) +
∑

e=uv∈E

(d(u) + d(v) + 1)f(uv)

⩽ (2∆+ 1)
( ∑

v∈V

f(v) +
∑

e=uv∈E

f(uv)

)
= (2∆+ 1)γ∗

dR(G).

which concludes the proof

Corollary 1. If G is an r-regular graph of order n, then

γ∗
dR(G) ⩽ ⌈3n(r+2)

2(2r+1) ⌉.

Corollary 2. If G is a cubic graph of order n, then

γ∗
dR(G) ⩾ ⌈15n

14 ⌉.

As can be seen in our next couple of results, the bound of Proposition 5 is sharp for paths Pn where
n ≡ 0, 3 (mod 5) and cycles Cn where n ≡ 0, 2 (mod 5). Hence, the bound of Corollary 1 is sharp for these
cycles as well.

Proposition 6. For n ⩾ 2,

γ∗
dR(Pn) =

{
⌈6n−3

5 ⌉ if n ≡ 0, 3 (mod 5)
⌈6n−3

5 ⌉+ 1 if n ≡ 1, 2, 4 (mod 5)

Proof. Assume that Pn = v1v2....v5⌊n
5 ⌋+j(0 ⩽ j ⩽ 4) is a path on n vertices and Z = V(Pn) ∪ E(Pn). Note

that γ∗
dR(P2) = γ∗

dR(P3) = 3 and γ∗
dR(P4) = 6. Assume that n ⩾ 5. Define f : Z → {0, 2, 3} by f(v5i−3) = 3

and f(v5i−1v5i) = 3 for 1 ⩽ i ⩽ ⌊n5 ⌋ and f(Z) = 0 otherwise if n ≡ 0( mod n) and f(vn) = 2 if n ≡ 1
(mod n). Now assume that n ≡ 2, 3, 4( mod n), than f(v5i−3) = 3 for 1 ⩽ i ⩽ ⌈n5 ⌉ and f(v5i−1v5i) = 3 for
1 ⩽ i ⩽ ⌊n5 ⌋, and f(vn− 1vn) = 3 and f(Z) = 0 otherwise. It is easy to see that f is a MDRDF of Pn of
weight ⌈6n−3

5 ⌉ if n ≡ 0, 3 (mod n) and w(f) = ⌈6n−3
5 ⌉+ 1 if n ≡ 1, 2, 4 (mod n). Therefore,

γ∗
dR(Pn) ⩽

{
⌈6n−3

5 ⌉ if n ≡ 0, 3 (mod 5)
⌈6n−3

5 ⌉+ 1 if n ≡ 1, 2, 4 (mod 5)
To prove the lower bound, let f be a MDRDF. Since at least three elements from V ∪ E are required to
dominate any five consecutive vertices on a path, and these three elements dominate at most 5 consecutive
edges, it is straightforward to check that γ∗

dR(Pn) is at least 3⌈n5 ⌉ if n ≡ 0, 2, 3, 4 (mod 5) and is at least
3⌈n5 ⌉+ 2 if n ≡ 1 (mod 5). Simplifying, we have that γ∗

dR(Pn) is bounded below by ⌈6n−3
5 ⌉ if n ≡ 0, 3

(mod n) and ⌈6n−3
5 ⌉+ 1 if n ≡ 1, 2, 4 (mod n), the result holds.

Proposition 7. For n ⩾ 3,

γ∗
dR(Cn) =

{
⌈6n

5 ⌉ if n ≡ 0, 2 (mod 5)
⌈6n

5 ⌉+ 1 if n ≡ 1, 3, 4 (mod 5)

Proof. Note that γ∗
dR(C3) = 5 and γ∗

dR(C4) = 6. Assume that n ⩾ 5. Applying Proposition 5, we have

γ∗
dR(Cn) ⩾ ⌈3(n+n)

2∆+1 ⌉ = ⌈6n
5 ⌉.
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Using an argument similar to the one for paths, we note that this lower bound on γ∗
dR(Cn) is strict when

n ≡ 1, 3, 4 (mod 5).
To prove the upper bound, we define a MDRDF on Cn, let V(Cn) = {v1, v2, ..., v5⌊n

5 ⌋+j} be the set of
vertices of Cn, where 0 ⩽ j ⩽ 4. Consider the function in G defined as follows: If n ≡ 0, 4 (mod 5), then
f(v5i−3) = 3 and f(v5i−1v5i) = 3 for 1 ⩽ i ⩽ ⌈n5 ⌉, f(x) = 0 otherwise and f(vn) = 3 if n ≡ 1, 2 (mod 5),
and f(vnv1) = 2 if n ≡ 3 (mod 5). Since f is MDRDF with w(f) = ⌈6n

5 ⌉+ 1 if n ≡ 1, 3, 4 (mod 5) and
w(f) = ⌈6n

5 ⌉ otherwise, the result holds.

We note that the bound given by Corollary 2 is also sharp. To illustrate this, we construct a family A

of cubic graphs with order 7t for any even integer t ⩾ 2 as follows: Let Ft be the union of t claws K1,3
where each claw has center vi for 1 ⩽ i ⩽ t, and let Ht be the union of 3t

2 edges. Construct a graph G

from Ft ∪Ht by adding 6k new edges, each joining a vertex in Ft to a vertex in Ht, in such a way that the
resulting graph is cubic Note that each of the additional 6t edges is dominated by the edges of Ht. Thus,
the set S = E(Ht)∪ {vi|1 ⩽ i ⩽ t} is a mixed double Roman dominating set of G, and assigning a 3 to each
element of S and a 0 to all other elements of G yields a mixed double Roman dominating function with
weight 3|S| = 3(3t

2 + t) = 15t
2 =

15(7t)
2×7 = 15n

14 . For a example where t=3, see Fig 1.

Figure 1: A cubic graph belonging to the family A

Observation 3. For every connected graph G of order n ⩾ 2 and size m, γ∗
dR(G) ⩽ 2(m + n) − 3 with

equality if and only if G = K2.

Proof. Assume xy ∈ E(G). Define f : V(G) ∪ E(G) → {0, 1, 2, 3} by f(x) = f(y) = 0, f(xy) = 3 and f(z) = 2
for z ∈ V(G) ∪ E(G) − {x,y, xy} obviously f is a mixed double Roman dominating function of G and so
γ∗
dR(G) ⩽ 2m+ 2n− 3. If G = K2, then clearly γ∗

dR(G) = 3 = 2(m+n) − 3.
Let γ∗

dR(G) = 2m+ 2n− 3, we show that ∆(G) = 1. Suppose to the contrary that ∆(G) ⩾ 2, let v be a
vertex of maximum degree ∆(G) and x1, x2 ∈ N(x). Then define the function f : V(G) ∪ E(G) → {0, 1, 2, 3}
by f(x1) = f(x2) = 0, f(x) = 3 and f(z) = 2 for z ∈ V(G) ∪ E(G) − {x1, x2, x}. It is easy to see that f is an
MDRDF of G of weight 2(m− 2 + n− 3) + 3 = 2m+ 2n− 7 which is contradiction. Thus ∆(G) = 1 and
hence G = K2.

Proposition 8. For every connected graph G of order n, size m and minimum degree δ(G) ⩾ 2, γ∗
dR(G) ⩽

2n− 4+ γedR(G).

Proof. Let f be a γedR(G)-function. Since γedR(G) ⩽ 5m
4 [? ]. We deduce that f(e) = 3 for some edge

e = uv ∈ E(G). Define g : V(G) ∪ E(G) → {0, 1, 2, 3} by g(u) = g(v) = 0, g(x) = 2 for x ∈ V(G) − {u, v}
and g(x) = f(x) for x ∈ E(G). It is easy to see that g is an MDRDF of G and hence γ∗

dR ⩽ w(g) =
2(n− 2) + γedR(G). This completes the proof.

Proposition 9. For 1 ⩽ r ⩽ s, γ∗
dR(Kr,s) = 3r.

Proof. Let X = {x1, x2, ..., xr} and Y = {y1,y2, ...,ys} be the partite sets of Kr,s with 1 ⩽ r ⩽ s. Clearly,
assigning a 3 to each vertex in X and 0 to each vertex in Y yields a MDRDF of cardinality 3r, so γ∗

dR(Kr,s) ⩽
3r. We note that since X,Y are independent sets to dominate the edges of G, each edge must be assigned a
3 or must be incident to a vertex a assigned a 3. Thus, γ∗

dR(Kr,s) ⩾ 3r and so γ∗
dR(Kr,s) = 3r.

Proposition 10. For any connected graph G,
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max{γdR(G),γedR(G)} ⩽ γ∗
dR(G) ⩽ γdR(G) + γedR(G).

The lower bound is sharp for stars K1,n(n ⩾ 2) and the upper bound is sharp for fan graph.

Proof. If f is a γdR(G)-function and g is a γedR(G)- function, then the function h : V ∪E → {0, 2, 3} defined
by h(x) = f(x) for x ∈ V and h(x) = g(x) for x ∈ E, is clearly a mixed double Roman dominating function
of G that implies γ∗

dR(G) ⩽ γdR(G) + γedR(G).
To prove the lower bound, let f be a γ∗

dR(G)-function. First we show that γdR(G) ⩽ γ∗
dR(G). Let V(G) =

{v1, v2, ..., vn} and E(vi) = {vivj ∈ E(G)|i < j}. Define g : V(G) → {0, 2, 3} by g(vi) = f(vi) ∪ (∪e∈E(vi)f(e))
for each 1 ⩽ i ⩽ n. Clearly, g is DRDF of G of weight w(f) that implies γdR(G) ⩽ γ∗

dR(G). Now, we
show that γedR(G) ⩽ γ∗

dR(G). Suppose that M = {x1y1, x2y2, ..., xryr} is maximum matching in G and
X = {w1,w2, ...,wp} is the set consisting of all M-unsaturated vertices. Let ei be an edge incident to
Wi for 1 ⩽ i ⩽ p and define h : E(G) → {0, 2, 3} by h(xiyi) = f(xiyi) ∪ f(xi) ∪ f(yi) for 1 ⩽ i ⩽ r,
h(ej) = f(ej) ∪ f(wj) for 1 ⩽ j ⩽ p and h(e) = f(e) otherwise. Clearly, h is EDRDF of G of weight w(f)
implying that γedR(G) ⩽ γ∗

dR(G). This complete the proof.

Proposition 11. If G is a graph and e ∈ E(G), then

γ∗
dR(G) − 3 ⩽ γ∗

dR(G+ e) ⩽ γ∗
dR(G) + 2.

Proof. To prove the upper bound, let f be a γ∗
dR(G)-function. Clearly, g : V(G) ∪ E(G) ∪ {e} → {0, 1, 2, 3}

defined by g(e) = 2 and g(x) = f(x) otherwise is a MDRDF of G+ e and hence γ∗
dR(G+ e) ⩽ γ∗

dR(G) + 2.
To prove the lower bound, assume that e = vw and f is a γ∗

dR(G + e)-function. First let f(e) = 0. If
f(v) = f(w) = 0 or 0 /∈ {f(v), f(w)}, then clearly the function f, restricted to G is a MDRDF of G implying
that γ∗

dR(g) − 3 < γ∗
dR(G) ⩽ γ∗

dR(G+ e). Assume, without loss of generality, that f(w) = 0 and f(v) ̸= 0.
Then the function g : V(G) ∪ E(G) → {0, 1, 2, 3} defined by g(w) = 2 and g(x) = f(x) otherwise, is a
MDRDF of G of weight γ∗

dR(G+ e) + 2 and hence γ∗
dR(g) − 3 ⩽ γ∗

dR(G+ e). Now let f(e) ̸= 0. Define
g : V(G) ∪ E(G) → {0, 1, 2, 3} by g(w) = f(w) ∪ f(e),g(v) = f(v) ∪ f(e) and g(x) = f(x) otherwise. It is to
see that g is a MDRDF of G of weight γ∗

dR(G+ e) + f(e) and so γ∗
dr(g) − 3 ⩽ γ∗

dR(G) − f(e) ⩽ γ∗
dR(G+ e).

This completes the proof.

Corollary 3. For any edge e in a graph G,

γ∗
dr(g) − 2 ⩽ γ∗

dR(G− e) ⩽ γ∗
dR(G) + 3.

Proposition 12. For n ⩾ 7,

γ∗
dR(Kn) =

{
n+ 2 if n ≡ 1, 3 (mod 4)
n+ 3 if n ≡ 0, 2 (mod 4)

Unless n ⩽ 6 in which cases γ∗
dR(K3) = 4,γ∗

dR(K4) = 6,γ∗
dR(K5) = 6,γ∗

dR(K6) = 8.

Proof. Let V(Cn) = {v1, v2, ..., vn} be the set of vertices of Cn and Z = V(Kn) ∪ E(Kn). Assume that
n ⩽ 6. Define f : Z → {0, 2, 3} by f(v1) = f(v2v3) = 3 if n = 4 and f(v1) = f(v2v3) = 2 for n = 3,
f(v1) = f(v2v3) = f(v4v5) = 2 if n = 5 and f(v1) = f(v4) = f(v2v3) = f(v5v6) = 2 if n = 6. Now assume that
n ⩾ 7. By Proposition 1, 2

γdR(Kn) + γedR(Kn−1) ⩽
{

n+ 2 if n ≡ 1, 3 (mod 4)
n+ 3 if n ≡ 0, 2 (mod 4)

Proposition 13. Let G be a connected graph of order n ⩾ 2, size m and ∆(G) ⩾ 1. Then γ∗
dR(G) ⩽

2(m+n) − 4∆(G) + 1.
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Proof. The result holds from G = K2. Thus, we may assume that n ⩾ 3 and ∆ ⩾ 2. Let v be a vertex
of maximum degree ∆(G) = k ⩾ 2. To simplify notation for a set S ⊆ V ∪ E of a graph G, let Nm[S] =∪

v∈SNm[v], and define the function fs by assigning 3 to every element of S, 0 every element in Nm[S]\S
and 2 to all remaining elements in V ∪ E, we note that fv is a MDRDF for any set v ∈ V ∪ E. Then,
γ∗
dR(G) ⩽ w(fv) = 2(m+n− 2∆(G) − 1) + 3 = 2(m+n) − 4∆(G) + 1

Proposition 9 shows that the bound of Proposition 13 is sharp. A set S ⊆ V(G) is a 2-packing set of G
if N[u]∩N[v] = ∅ holds for any two distinct vertices u, v ∈ S. The 2-packing number of G, denote ρ(G), is
defined as follow: ρ(G) = max{|S| : S is a 2-packing set of G}.

Observation 4. Let G be a connected graph of order n ⩾ 2 and size m. Then

γ∗
dR(G) ⩽ 2m+ 2n− (4δ(G) − 1)ρ(G).

Proof. Let {x1, x2, ..., xk} be a 2-packing of G. Define f : V ∪ E → {0, 1, 2, 3} by f(xi) = 3, f(x) = 0 for
x ∈ N(xi) for 1 ⩽ i ⩽ k and f(x) = 2 otherwise. It is easy to see that f is an MDRDF of G. Thus

γ∗
dR(G) ⩽ w(f) = 2(m+n−

k∑
i=1

(2deg(xi) + 1) + 3k

= 2m+ 2n− 2
k∑

i=1
(2deg(xi) + 1) + 3k

⩽ 2m+ 2n− 2(2δ(G)k+ k) + 3k
⩽ 2m+ 2n− (4δ(G) − 1)k.
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