

Mixed Double Roman Domination Number of a Graph

Mina Valinavaz ${ }^{\text {a,* }}$
${ }^{\text {a }}$ Department of Mathematics, Azarbaijan Shahid Madani University Tabriz, I.R. Iran.

Abstract

Let $G=(V, E)$ be a simple graph with vertex set V and edge set E. Amixed double Roman dominating function (MDRDF) of G is a function $f: V \cup E \rightarrow\{0,1,2,3\}$ satisfying the condition every element $x \in V \cup E$ for which $f(x)=0$, is adjacent or incident to at least two elements $y, y^{\prime} \in V \cup E$ for which $f(y)=f\left(y^{\prime}\right)=2$ or one element $y^{\prime \prime} \in V \cup E$ with $f\left(y^{\prime \prime}\right)=3$, and if $f(x)=1$, then element $x \in V \cup E$ must have at least one neighbor $y \in V \cup E$ with $f(y) \geqslant 2$. The mixed double Roman dominating number of G, denoted by $\gamma_{d R}^{*}(G)$. The weight of a MDRDF f is $w(f)=\sum_{x \in V \cup E} f(x)$. The mixed double Roman domination number of G is the minimum weight of a mixed double Roman dominating function of G .

Keywords: Double Roman dominating function, Double Roman domination number, Mixed double Roman dominating function, Mixed double Roman domination number.

2020 MSC: MSC 05C69
©2022 All rights reserved.

1. Introduction

In this paper, G is a simple graph with vertex set $V=V(G)$ and edge set $E=E(G)$. The order $|V|$ of G is denoted by $n=\mathfrak{n}(G)$. For every vertex $v \in V$, the open neighborhood of v is the set $N(v)=\{u \in$ $\mathrm{V}(\mathrm{G}): u v \in \mathrm{E}(\mathrm{G})\}$ and the closed neighborhood of v is the set $\mathrm{N}[v]=\mathrm{N}(v) \cup\{v\}$. The degree of a vertex $v \in \mathrm{~V}$ is $\operatorname{deg}_{\mathrm{G}}(v)=|\mathrm{N}(v)|$. The minimum and maximum degree of a graph G are denote by $\delta=\delta(\mathrm{G})$ and $\Delta=\Delta(\mathrm{G})$, respectively. The Open neighborhood of a set $S \subseteq V$ is the set $N(S)=\bigcup_{v} \in S N(v)$, and the closed neighborhoodof S is the set $N[S]=N(S) \cup S$. For any $x \in V \cup E$, we denote by $N_{m}(x)=\{y \in V \cup E$: y is either adjacent or incident with $x\}$, and $N_{m}[x]=N_{m}(x) \cup\{x\}$. A fan graph $F_{1, n}$ is defined as the graph $K_{1}+P_{n}$, where K_{1} is the empty graph on one vertex and P_{n} is the path graph on n vertices. A set of vertices S in a graph G is dominating setof G if $N[S]=V$, that is, every vertex in $V \backslash S$ is adjacent to a vertex in S. The domination number $\gamma(\mathrm{G})$ is the minimum cardinality of a dominating set of G. A more general version of domination, where each element $x \in V \cup E$ dominates $N_{m}[x]$, is mixed domination, see for examples $[8,11,12]$. For a mixed dominating set $S \subseteq V \cup E$, every element in denote $\gamma^{*}(G)$, of G is minimum cardinality of any mixed dominating set of G. A mixed dominating set is also called a total cover in $[9,10]$.
A mixed Roman dominating functionMRDF on a graph G is defined by Ahangar, Haynes and Tripodoro in [7] as a function $f: V \cup E \longrightarrow\{0,1,2\}$ satisfying the condition every element $x \in V \cup e$ for which $f(x)=0$ is

[^0]adjacent or incident to at least one element $y \in V \cup E$ for which $f(y)=2$. The weight, $\boldsymbol{\omega}(f)$, of f is defined as $f(V(G))$. The mixed Roman domination number of a graph G, denoted by $\gamma_{R}^{*}(G)$, is the minimum weight of any mixed Roman dominating function of G . (for example [2, 3]).
A double Roman dominating function on a graph G is defined by Beeler, Haynes and Hedetniemi in [7] as a function $\mathrm{f}: \mathrm{V} \longrightarrow\{0,1,2,3\}$ having the property that if $f(u)=0$, then vertex u has at least two neighbors assigned 2 under f or one neighbor w with $f(w)=3$, and if $f(u)=1$, then vertex u must have at least one neighbor w with $f(w) \geqslant 2$. The weight, $\boldsymbol{w}(\mathrm{f})$, of f is defined as $\mathrm{f}(\mathrm{V}(\mathrm{G}))$. The double Roman domination number of a graph G, denoted by $\gamma_{d R}(G)$, is the minimum weight of any double Roman dominating function of G . Further results on the double Roman domination number can be found in [7, 1].
A Edge double Roman dominating function(EDRDF) of graph G is defined by Valinavaz in $[4,5,6]$ as function $f: E(G) \longrightarrow\{0,1,2,3\}$ having the property that if $f(e)=0$, then edge e has at least two neighbors assigned 2 under f or one neighbor e^{\prime} with $\mathrm{f}\left(e^{\prime}\right)=3$, and if $\mathrm{f}(e)=1$, then edge e must have at least one neighbor e^{\prime} with $f\left(e^{\prime}\right) \geqslant 2$. The weight of an edge double Roman dominating number of f, denote by $\omega(f)$, is the value $\sum_{e \in E(G)} f(e)$. The weight of a EDRDF, $\sum_{e \in E(G)} f(e)$. The minimum weight of a EDRDF is the edge double roman domination number of G, denoted by $\gamma_{e d r}(G)$.

We introduce the mixed version of double Roman domination as follows. Given a graph G, a mixed double Roman dominating function (MDRDF) of G is a function $\boldsymbol{f}: \mathrm{V} \cup \mathrm{E} \rightarrow\{0,1,2,3\}$ satisfying the condition every element $x \in V \cup E$ for which $f(x)=0$, is adjacent or incident to at least two elements $y, y^{\prime} \in V \cup E$ for which $f(y)=f\left(y^{\prime}\right)=2$ or one element $y^{\prime \prime} \in V \cup E$ with $f\left(y^{\prime \prime}\right)=3$, and if $f(x)=1$, then element $x \in V \cup E$ must have at least one neighbor $y \in V \cup E$ with $f(y) \geqslant 2$. The mixed double Roman dominating number of G, denoted by $\gamma_{d R}^{*}(G)$. The weight of a MDRDF f is $w(f)=\sum_{x \in V \cup E} f(x)$. The mixed double Roman domination number of G is the minimum weight of a mixed double Roman dominating function of G. A MDRDF with minimum weight is called a γ_{dR}^{*}-function on G. Each MDRDF determines a partition of the set $V \cup E=\left(V_{0} \cup E_{0}\right) \cup\left(V_{1} \cup E_{1}\right) \cup\left(V_{2} \cup E_{2}\right) \cup\left(V_{3} \cup E_{3}\right)$, where $V_{i} \cup E_{i}=\{x \in V \cup E: f(x)=i\}$. For the sake of simplicity, we will denote by $f[x]=f\left(N_{m}[x]\right)=\sum_{v \in N_{m}[x]} f(v)$, for all $x \in V \cup E$. Let G be a graph. Suppose $T(G)$ is the graph whose vertex set is $V \cup E$ and two vertices in $T(G)$ are adjacent if and only if they are adjacent or incident in G . The proof of the following result is straightforward and therefore omitted.
Observation 1. For any graph G,

$$
\gamma_{\mathrm{dR}}^{*}(\mathrm{G})=\gamma_{\mathrm{dR}}(\mathrm{~T}(\mathrm{G})) \text { and } \gamma^{*}(\mathrm{G})=\gamma(\mathrm{T}(\mathrm{G}))
$$

Problem 1. For $n \geqslant 2, \gamma_{\mathrm{dR}}\left(\mathrm{K}_{\mathrm{n}}\right)=3$
Problem 2. For a complete graph K_{n} with $n \geqslant 4, \gamma_{e d R}(G)\left(K_{n}\right)=n$ if n is even, and $\gamma_{e d R}(G)\left(K_{n}\right)=n+1$ if n is odd.

2. Basic Properties

Proposition 1. For any graph G, there exists a $\gamma_{\mathrm{d} R}^{*}(\mathrm{G})$-function such that no edge and vertex needs to be assigned the value 1 .
Proof. Let f be a $\gamma_{d R}^{*}$-function on a graph G. Suppose that for some $x \in E \cup V, f(x)=1$. This means that there is a element $x^{\prime} \in N(x)$, such that either $f\left(x^{\prime}\right)=2$ or $f\left(x^{\prime}\right)=3$. If $f\left(x^{\prime}\right)=3$, then we can achieve a mixed double Roman dominating function by reassigning a 0 to x. This results in a function with strictly less weight than f, contradicting that f is a $\gamma_{d R}^{*}$-function of G. If $f\left(x^{\prime}\right)=2$, then we can create a mixed double Roman domination function g defined as follows: $g(x)=f(x)$ for all $x \notin\left\{x, x^{\prime}\right\}, g(x)=0$, and $g\left(x^{\prime}\right)=3$. This result in a mixed double Roman domination function with weight equal to f.

By Proposition 1, for any mixed double Roman dominating function f^{\prime}, there exists a mixed double Roman dominating function f no greater weight than f^{\prime} for which $V_{1} \cup E_{1}=\emptyset$. Henceforth, without loss of generality, in determining the value $\gamma_{d R}^{*}(G)$ for any graph G, we can assume that $E_{1} \cup V_{1}=\emptyset$ for all mixed double Roman dominating functions under consideration.

Observation 2. Let $f=\left(V_{0} \cup E_{0}, V_{1} \cup E_{1}, V_{2} \cup E_{2}, V_{3} \cup E_{3}\right)$ be a MDRDF of a graph G. Then the following holds.
(a) Every element in $V_{0} \cup E_{0}$ is dominated by some element of $V_{3} \cup E_{3}$ or at least two elements of $V_{2} \cup E_{2}$.
(b) $w(f)=2\left|V_{2} \cup E_{2}\right|+3\left|V_{3} \cup E_{3}\right|$.
(c) $V_{2} \cup V_{3} \cup E_{2} \cup E_{3}$ is a mixed dominating set in G.
(d) It is not difficult to check that

$$
\begin{aligned}
\sum_{v \in V} f[v]+\sum_{e=u w \in E} f[e] & =\sum_{v \in V} f\left(N_{\mathfrak{m}}[v]\right)+\sum_{e=u w \in E} f\left(N_{\mathfrak{m}}[e]\right) \\
& =\sum_{v \in V}(2 \mathrm{~d}(v)+1) f(v) \\
& +\sum_{e=u w \in E}(d(u)+d(w)+1) f(u w) .
\end{aligned}
$$

A classic result from [7] gives the following bounds on the double Roman dominating number of a graph G in terms of its domination number: $2 \gamma(\mathrm{G}) \leqslant \gamma_{\mathrm{dR}}(\mathrm{G}) \leqslant 3 \gamma(\mathrm{G})$. We show that an analogous result applies for the mixed version as well.

Proposition 2. For any graph G,

$$
2 \gamma^{*}(\mathrm{G}) \leqslant \gamma_{\mathrm{d} R}^{*}(\mathrm{G}) \leqslant 3 \gamma^{*}(\mathrm{G})
$$

Proof. For the lower bound, let $f=\left(V_{0} \cup E_{0}, V_{2} \cup E_{2}, V_{3} \cup E_{3}\right)$ be a $\gamma_{d R}^{*}$-function of a graph G. Let $S \subseteq V \cup E$ be a $\gamma^{*}(G)$-set. Note that $(\emptyset, \emptyset, S)$ is a mixed double Roman dominating function. This yields the upper of $\gamma_{\mathrm{dR}}^{*}(\mathrm{G}) \leqslant 3 \gamma^{*}(\mathrm{G})$. On the other hand, by Observation $2(\mathrm{c}), \mathrm{V}_{2} \cup \mathrm{E}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{E}_{3}$ is a mixed dominating set for G. Thus, $\gamma^{*}(\mathrm{G}) \leqslant\left|\mathrm{V}_{2} \cup \mathrm{E}_{2}\right|+\left|\mathrm{V}_{3} \cup \mathrm{E}_{3}\right|$. We can obtain the lower bound,

$$
\gamma_{\mathrm{dR}}^{*}(\mathrm{G})=2\left|\mathrm{~V}_{2} \cup \mathrm{E}_{2}\right|+3\left|\mathrm{~V}_{3} \cup \mathrm{E}_{3}\right| \geqslant 2\left(\left|\mathrm{~V}_{2} \cup \mathrm{E}_{2}\right|+\left|\mathrm{V}_{3} \cup \mathrm{E}_{3}\right|\right) \geqslant 2 \gamma^{*}(\mathrm{G})
$$

Both the bounds of Proposition 2 are sharp. For the upper bound, as we have seen, the family of non-trivial stars $K_{1, n-1}$ has $\gamma^{*}\left(\mathrm{~K}_{1, n-1}\right)=1$ and $\gamma_{d R}^{*}\left(\mathrm{~K}_{1, n-1}\right)=3$. For the lower bound, we also recall the empty graph $\overline{\mathrm{K}_{n}}$, has $\gamma^{*}\left(\overline{\mathrm{~K}_{n}}\right)=1$ and $\gamma_{\mathrm{dR}}^{*}\left(\overline{\mathrm{~K}_{n}}\right)=2 \mathrm{~A}$ graph G is said to be a double Roman graph if $\gamma_{\mathrm{dR}}(\mathrm{G})=3 \gamma(\mathrm{G})$. Similarly, we say that a graph G is a mixed double Roman graph if $\gamma_{\mathrm{dR}}^{*}(\mathrm{G})=3 \gamma^{*}(\mathrm{G})$.

Proposition 3. A graph G is mixed double Roman graph if and only if it has a $\gamma_{d R}^{*}$-function $f=\left(V_{0} \cup\right.$ $\left.E_{0}, V_{2} \cup E_{2}, V_{3} \cup E_{3}\right)$ with $\left|V_{2} \cup E_{2}\right|=0$.

Proof. Let f be a $\gamma_{d R}^{*}$-function on G with $\left|V_{2} \cup E_{2}\right|=0$. Taking into account that $V_{2} \cup E_{2} \cup V_{3} \cup E_{3}=V_{3} \cup E_{3}$ is a mixed dominating set in G and that $\gamma_{d R}^{*}(G)=w(f)=2\left|V_{2} \cup E_{2}\right|+3\left|V_{3} \cup E_{3}\right|=3\left|V_{3} \cup E_{3}\right|$, it is derived that $\gamma_{\mathrm{dR}}(\mathrm{G})=3 \gamma(\mathrm{G})$. Thus, G is a mixed double Roman graph.
Conversely, assume that G is a mixed double Roman graph, that is, $\gamma_{d R}(G)=3 \gamma(G)$. Let $X \subseteq V \cup E$ be a mixed dominating set in G and define a MDRDF f as follows: $f(X)=3$ for every $x \in X$ and $f(x)=0$, otherwise. Clearly, f is a $\gamma_{d R}^{*}$-function on G such that $\left|V_{2} \cup E_{2}\right|=0$.

We observe that $\gamma_{d R}^{*}(G)=2$ if and only if G is the trivial graph K_{1}. We conclude the section by considering graphs having small mixed double Roman domination numbers.

Proposition 4. Let G be a connected graph of order $n \geqslant 2$. Then

1. $\gamma_{\mathrm{dR}}^{*}(\mathrm{G})=3$ if and only if $\mathrm{G}=\mathrm{K}_{1, \mathrm{n}-1}$.
2. $\gamma_{\mathrm{dR}}^{*}(\mathrm{G})=4$ if and only if $\mathrm{G}=\left\{\overline{\mathrm{K}_{2}}, \mathrm{~K}_{3}\right\}$.
3. $\gamma_{\mathrm{dR}}^{*}(\mathrm{G})=5$ if and only if $\mathrm{G}=\left\{\mathrm{K}_{1, \mathrm{n}-2} \cup \mathrm{~K}_{1}, \mathrm{~K}_{1, \mathrm{n}-1}+\mathrm{e}\right\}$.

Proof. Let $f=\left(V_{0} \cup E_{0}, V_{1} \cup E_{1}, V_{2} \cup E_{2}, V_{3} \cup E_{3}\right)$ be a $\gamma_{d R}^{*}$-function of G such that $V_{1} \cup E_{1}=\emptyset$ (by Proposition 1).

1. If $\mathrm{G} \in \mathrm{K}_{1, \mathrm{n}-1}$, then clearly $\gamma_{\mathrm{dR}}^{*}(\mathrm{G})=3$. Conversely, let $\gamma_{\mathrm{dR}}^{*}(\mathrm{G})=3$, it follows that $\left|\mathrm{V}_{3} \cup \mathrm{E}_{3}\right|=1$ and $\mathrm{V}_{2} \cup \mathrm{E}_{2}=\emptyset$. In the former case, we deduce that $\mathrm{G}=\mathrm{K}_{1, \mathrm{n}-1}$.
2. If $\gamma_{d R}^{*}(G)=4$, then $\left|V_{2} \cup E_{2}\right|=2$ and $V_{3} \cup E_{3}=\emptyset$. Thus, we may assume that $V_{2} \cup E_{2}=\{x, y\}$. If G is disconnected, then $G \in \overline{\mathrm{~K}_{2}}$. Hence, we may assume that G is connected. Then x, y dominated all the elements of $(V \cup E)$, implying that $y \in V_{2}$ and $x \in E_{2}$. It follows that $G=K_{3}$. The converse is obvious.
3. Assume that $\gamma_{d R}^{*}(G)=5$. We deduce from $2\left|V_{2} \cup E_{2}\right|+3\left|V_{3} \cup E_{3}\right|=5$ that $\left|V_{2} \cup E_{2}\right|=\left|V_{3} \cup E_{3}\right|=1$. Thus, we may assume that $V_{2} \cup E_{2}=\{x\}$ and $V_{3} \cup E_{3}=\{y\}$. If G is disconnected, then $G \in K_{1, n-2} \cup K_{1}$ for $n \geqslant 3$ and the result holds. Hence, we may assume that G is connected. Then y dominated all the elements of $(V \cup E) \backslash\{x\}$, implying that $y \in V_{3}$ and $x \in E_{2}$. It follows that $G=K_{1, n-1}+e$ for $n \geqslant 3$. The converse is obvious.

3. Bounds On the Mixed Double Roman Domination Number

Lemma 1. Let f be a $\gamma_{d R^{\prime}}^{*}$-function on a graph G. If $\mathrm{f}[e]=\mathrm{f}\left(\mathrm{N}_{\mathrm{m}}[\mathrm{e}]\right)=2$ for some edge $e=u v$, then there exist at least $d(u)+d(v)-2 \geqslant 2$ edges e^{\prime} for which $f\left[e^{\prime}\right] \geqslant 4$.

Proof. Let $e=x y$ be an edge satisfying the conditions of the lemma. As $f[e]=2$, we may deduce that $f(x y)=2$ and that $f(x)=f(y)=f\left(x x^{\prime}\right)=f\left(y y^{\prime}\right)=0$, for all $x^{\prime} \in N(x)$ and $y^{\prime} \in N(y)$. Since f is a MDRDF, it follows that for f to dominate x (respectively, y), $d(x) \geqslant 2$ (respectively, $d(y) \geqslant 2)$. Since $f\left(x x^{\prime}\right)=0$ for all $x^{\prime} \in N(x)$, either $f\left(x^{\prime}\right)=2$ or there exists a vertex $t \in N\left(x^{\prime}\right) \backslash\{x\}$ for which $f\left(x^{\prime} t\right)=3$ to dominate $x x^{\prime}$. In any case, it is derived that $f\left[x x^{\prime}\right] \geqslant f(x y)+f\left(x^{\prime} t\right) \geqslant 4$ for all $x^{\prime} \in N(x) \backslash\{y\}$. Reasoning analogously, we may conclude that $f\left[y x^{\prime}\right] \geqslant f(x y)+f\left(x^{\prime} t\right) \geqslant 4$ for all $x^{\prime} \in N(y) \backslash\{x\}$. Summing up, there are at least $d(x)+d(y)-2 \geqslant 2$ edges e^{\prime} such that $f\left[e^{\prime}\right] \geqslant 4$.

Lemma 2. Let f be a $\gamma_{\mathrm{d} R}^{*}$-function on a graph G with no isolated vertices. If $\mathrm{f}[v]=2$ for some $v \in \mathrm{~V}$, then $\mathrm{f}\left[v^{\prime}\right] \geqslant 4$ for all $v^{\prime} \in \mathrm{N}(v)$.

Proof. Assume that $f[v]=2$. Thus, $f(v)=2$ and $f(x)=0$ for all $x \in N_{m}(v)$. Since G has no isolated vertices, $\mathrm{d}(v) \geqslant 1$. Let $v^{\prime} \in \mathrm{N}(v)$. Since f is a MDRDF, there is an element $x_{v}^{\prime} \in \mathrm{N}(\mathrm{m})\left(v^{\prime}\right)$ with $\mathrm{f}\left(\mathrm{x} v^{\prime}\right)=3$. Therefore, $\mathrm{f}\left[v^{\prime}\right] \geqslant \mathrm{f}\left(v^{\prime}\right)+\mathrm{f}(v)+\mathrm{f}\left(\mathrm{x}_{v}^{\prime}\right)=0+2+3=5$.

Next we give a lower bound on the mixed double Roman domination number of a graph in terms of its order, size, and maximum degree.

Proposition 5. Let G be a graph of order n, size m, and maximum degree $\Delta \geqslant \delta \geqslant 1$. Then

$$
\gamma_{\mathrm{d} R}^{*}(\mathrm{G}) \geqslant\left\lceil\frac{3(\mathrm{~m}+\mathrm{n})}{2 \Delta+1}\right\rceil .
$$

Proof. Let f be a $\gamma_{d R}^{*}-M D R D F$ in G. Note that for any element $x \in V_{0} \cup E_{0} \cup V_{2} \cup E_{2} \cup V_{3} \cup E_{3}$, we have that $\mathrm{f}[\mathrm{x}] \geqslant 3$. Combining this with Observation 2, Lemma 1and Lemma 2, we obtain that $\sum_{e \in \mathrm{E}} \mathrm{f}[\mathrm{e}] \geqslant 3|\mathrm{E}|=3 \mathrm{~m}$
and $\sum_{v \in \mathrm{~V}} \mathrm{f}[v] \geqslant 3|\mathrm{~V}|=3 \mathrm{n}$. Therefore,

$$
\begin{aligned}
3(m+n) & \leqslant \sum_{v \in V} f[v]+\sum_{e=u v \in E} f[u v] \\
& =\sum_{v \in V}(2 d(v)+1) f(v)+\sum_{e=u v \in E}(d(u)+d(v)+1) f(u v) \\
& \leqslant(2 \Delta+1)\left(\sum_{v \in V} f(v)+\sum_{e=u v \in E} f(u v)\right) \\
& =(2 \Delta+1) \gamma_{d R}^{*}(G) .
\end{aligned}
$$

which concludes the proof
Corollary 1. If G is an r -regular graph of order n , then

$$
\gamma_{\mathrm{dR}}^{*}(\mathrm{G}) \leqslant\left\lceil\frac{3 \mathrm{n}(\mathrm{r}+2)}{2(2 \mathrm{r}+1)}\right\rceil .
$$

Corollary 2. If G is a cubic graph of order \mathfrak{n}, then

$$
\gamma_{\mathrm{dR}}^{*}(\mathrm{G}) \geqslant\left\lceil\frac{15 n}{14}\right\rceil .
$$

As can be seen in our next couple of results, the bound of Proposition 5 is sharp for paths P_{n} where $n \equiv 0,3(\bmod 5)$ and cycles C_{n} where $n \equiv 0,2(\bmod 5)$. Hence, the bound of Corollary 1 is sharp for these cycles as well.

Proposition 6. For $n \geqslant 2$,

$$
\gamma_{\mathrm{dR}}^{*}\left(\mathrm{P}_{\mathrm{n}}\right)= \begin{cases}\left\lceil\frac{6 \mathrm{n}-3}{5}\right\rceil & \text { if } n \equiv 0,3(\bmod 5) \\ \left\lceil\frac{6 n^{-3}}{5}\right\rceil+1 & \text { if } n \equiv 1,2,4(\bmod 5)\end{cases}
$$

Proof. Assume that $P_{n}=v_{1} v_{2} \ldots v_{5\left\lfloor\frac{n}{5}\right\rfloor+j}(0 \leqslant j \leqslant 4)$ is a path on n vertices and $Z=V\left(P_{n}\right) \cup E\left(P_{n}\right)$. Note that $\gamma_{\mathrm{dR}}^{*}\left(\mathrm{P}_{2}\right)=\gamma_{\mathrm{dR}}^{*}\left(\mathrm{P}_{3}\right)=3$ and $\gamma_{\mathrm{dR}}^{*}\left(\mathrm{P}_{4}\right)=6$. Assume that $\mathrm{n} \geqslant 5$. Define $\mathrm{f}: \mathrm{Z} \rightarrow\{0,2,3\}$ by $\mathrm{f}\left(v_{5 i-3}\right)=3$ and $f\left(v_{5 i-1} v_{5 i}\right)=3$ for $1 \leqslant \mathfrak{i} \leqslant\left\lfloor\frac{n}{5}\right\rfloor$ and $f(Z)=0$ otherwise if $n \equiv 0(\bmod n)$ and $f\left(v_{n}\right)=2$ if $n \equiv 1$ $(\bmod n)$. Now assume that $n \equiv 2,3,4(\bmod n)$, than $f\left(v_{5 i-3}\right)=3$ for $1 \leqslant i \leqslant\left\lceil\frac{n}{5}\right\rceil$ and $f\left(v_{5 i-1} v_{5 i}\right)=3$ for $1 \leqslant \mathfrak{i} \leqslant\left\lfloor\frac{n}{5}\right\rfloor$, and $f\left(v n-1 v_{n}\right)=3$ and $f(Z)=0$ otherwise. It is easy to see that f is a MDRDF of P_{n} of weight $\left\lceil\frac{6 n-3}{5}\right\rceil$ if $n \equiv 0,3(\bmod n)$ and $w(f)=\left\lceil\frac{6 n-3}{5}\right\rceil+1$ if $n \equiv 1,2,4(\bmod n)$. Therefore,

$$
\gamma_{\mathrm{dR}}^{*}\left(\mathrm{P}_{\mathrm{n}}\right) \leqslant \begin{cases}\left\lceil\frac{6 \mathfrak{n}-3}{5}\right\rceil & \text { if } n \equiv 0,3(\bmod 5) \\ \left\lceil\frac{6 n^{-3}}{5}\right\rceil+1 & \text { if } \quad n \equiv 1,2,4(\bmod 5)\end{cases}
$$

To prove the lower bound, let f be a MDRDF. Since at least three elements from $V \cup E$ are required to dominate any five consecutive vertices on a path, and these three elements dominate at most 5 consecutive edges, it is straightforward to check that $\gamma_{\mathrm{dR}}^{*}\left(\mathrm{P}_{\mathrm{n}}\right)$ is at least $3\left\lceil\frac{\mathrm{n}}{5}\right\rceil$ if $\mathrm{n} \equiv 0,2,3,4(\bmod 5)$ and is at least $3\left\lceil\frac{n}{5}\right\rceil+2$ if $n \equiv 1(\bmod 5)$. Simplifying, we have that $\gamma_{d R}^{*}\left(P_{n}\right)$ is bounded below by $\left\lceil\frac{6 n-3}{5}\right\rceil$ if $n \equiv 0,3$ $(\bmod \mathfrak{n})$ and $\left\lceil\frac{6 \mathfrak{n}-3}{5}\right\rceil+1$ if $n \equiv 1,2,4(\bmod \mathfrak{n})$, the result holds.

Proposition 7. For $n \geqslant 3$,

$$
\gamma_{\mathrm{dR}}^{*}\left(\mathrm{C}_{\mathrm{n}}\right)=\left\{\begin{array}{lll}
\left\lceil\frac{6 n}{5}\right\rceil & \text { if } n \equiv 0,2(\bmod 5) \\
\left\lceil\frac{\mathrm{n}}{5}\right\rceil+1 & \text { if } \quad \mathrm{n} \equiv 1,3,4(\bmod 5)
\end{array}\right.
$$

Proof. Note that $\gamma_{\mathrm{dR}}^{*}\left(\mathrm{C}_{3}\right)=5$ and $\gamma_{\mathrm{dR}}^{*}\left(\mathrm{C}_{4}\right)=6$. Assume that $\mathrm{n} \geqslant 5$. Applying Proposition 5, we have

$$
\gamma_{\mathrm{dR}}^{*}\left(\mathrm{C}_{\mathrm{n}}\right) \geqslant\left\lceil\frac{3(n+n)}{2 \Delta+1}\right\rceil=\left\lceil\frac{6 n}{5}\right\rceil .
$$

Using an argument similar to the one for paths, we note that this lower bound on $\gamma_{d R}^{*}\left(C_{n}\right)$ is strict when $\mathrm{n} \equiv 1,3,4(\bmod 5)$.
To prove the upper bound, we define a MDRDF on C_{n}, let $V\left(C_{n}\right)=\left\{v_{1}, v_{2}, \ldots, v_{5\left\lfloor\frac{n}{5}\right\rfloor+j}\right\}$ be the set of vertices of C_{n}, where $0 \leqslant j \leqslant 4$. Consider the function in G defined as follows: If $n \equiv 0,4(\bmod 5)$, then $\mathrm{f}\left(v_{5 i-3}\right)=3$ and $\mathrm{f}\left(v_{5 i-1 v_{5} i}\right)=3$ for $1 \leqslant \mathfrak{i} \leqslant\left\lceil\frac{\mathfrak{n}}{5}\right\rceil, f(x)=0$ otherwise and $\mathrm{f}\left(v_{n}\right)=3$ if $\mathfrak{n} \equiv 1,2(\bmod 5)$, and $f\left(v_{n} v_{1}\right)=2$ if $n \equiv 3(\bmod 5)$. Since f is MDRDF with $w(f)=\left\lceil\frac{6 n}{5}\right\rceil+1$ if $n \equiv 1,3,4(\bmod 5)$ and $w(f)=\left\lceil\frac{6 n}{5}\right\rceil$ otherwise, the result holds.

We note that the bound given by Corollary 2 is also sharp. To illustrate this, we construct a family \mathcal{A} of cubic graphs with order 7 t for any even integer $\mathrm{t} \geqslant 2$ as follows: Let F_{t} be the union of t claws $\mathrm{K}_{1,3}$ where each claw has center v_{i} for $1 \leqslant i \leqslant t$, and let H_{t} be the union of $\frac{3 t}{2}$ edges. Construct a graph G from $F_{t} \cup H_{t}$ by adding $6 k$ new edges, each joining a vertex in F_{t} to a vertex in H_{t}, in such a way that the resulting graph is cubic Note that each of the additional 6 t edges is dominated by the edges of H_{t}. Thus, the set $S=E\left(H_{t}\right) \cup\left\{v_{i} \mid 1 \leqslant i \leqslant t\right\}$ is a mixed double Roman dominating set of G, and assigning a 3 to each element of S and a 0 to all other elements of G yields a mixed double Roman dominating function with weight $3|S|=3\left(\frac{3 \mathrm{t}}{2}+\mathrm{t}\right)=\frac{15 \mathrm{t}}{2}=\frac{15(7 \mathrm{t})}{2 \times 7}=\frac{15 \mathrm{n}}{14}$. For a example where $\mathrm{t}=3$, see Fig 1 .

Figure 1: A cubic graph belonging to the family \mathcal{A}

Observation 3. For every connected graph G of order $n \geqslant 2$ and size $m, \gamma_{d R}^{*}(G) \leqslant 2(m+n)-3$ with equality if and only if $G=\mathrm{K}_{2}$.

Proof. Assume $x y \in E(G)$. Define $f: V(G) \cup E(G) \rightarrow\{0,1,2,3\}$ by $f(x)=f(y)=0, f(x y)=3$ and $f(z)=2$ for $z \in V(G) \cup E(G)-\{x, y, x y\}$ obviously f is a mixed double Roman dominating function of G and so $\gamma_{d R}^{*}(G) \leqslant 2 m+2 n-3$. If $G=K_{2}$, then clearly $\gamma_{d R}^{*}(G)=3=2(m+n)-3$.
Let $\gamma_{d R}^{*}(G)=2 m+2 n-3$, we show that $\Delta(G)=1$. Suppose to the contrary that $\Delta(G) \geqslant 2$, let v be a vertex of maximum degree $\Delta(G)$ and $x_{1}, x_{2} \in N(x)$. Then define the function $f: V(G) \cup E(G) \rightarrow\{0,1,2,3\}$ by $f\left(x_{1}\right)=f\left(x_{2}\right)=0, f(x)=3$ and $f(z)=2$ for $z \in V(G) \cup E(G)-\left\{x_{1}, x_{2}, x\right\}$. It is easy to see that f is an MDRDF of G of weight $2(\mathrm{~m}-2+\mathfrak{n}-3)+3=2 \mathrm{~m}+2 \mathfrak{n}-7$ which is contradiction. Thus $\Delta(\mathrm{G})=1$ and hence $G=K_{2}$.

Proposition 8. For every connected graph G of order n, size m and minimum degree $\delta(G) \geqslant 2, \gamma_{d R}^{*}(G) \leqslant$ $2 \mathrm{n}-4+\gamma_{\mathrm{edR}}(\mathrm{G})$.

Proof. Let f be a $\gamma_{e d R}(G)$-function. Since $\gamma_{e d R}(G) \leqslant \frac{5 m}{4}[$?]. We deduce that $f(e)=3$ for some edge $e=u v \in E(G)$. Define $g: V(G) \cup E(G) \rightarrow\{0,1,2,3\}$ by $g(u)=g(v)=0, g(x)=2$ for $x \in V(G)-\{u, v\}$ and $g(x)=f(x)$ for $x \in E(G)$. It is easy to see that g is an MDRDF of G and hence $\gamma_{d R}^{*} \leqslant w(g)=$ $2(n-2)+\gamma_{e d R}(G)$. This completes the proof.

Proposition 9. For $1 \leqslant r \leqslant s, \gamma_{d R}^{*}\left(K_{r, s}\right)=3 r$.
Proof. Let $X=\left\{x_{1}, x_{2}, \ldots, x_{r}\right\}$ and $Y=\left\{y_{1}, y_{2}, \ldots, y_{s}\right\}$ be the partite sets of $K_{r, s}$ with $1 \leqslant r \leqslant s$. Clearly, assigning a 3 to each vertex in X and 0 to each vertex in Y yields a MDRDF of cardinality $3 r$, so $\gamma_{d R}^{*}\left(K_{r, s}\right) \leqslant$ 3r. We note that since X, Y are independent sets to dominate the edges of G, each edge must be assigned a 3 or must be incident to a vertex a assigned a 3 . Thus, $\gamma_{d R}^{*}\left(\mathrm{~K}_{\mathrm{r}, \mathrm{s}}\right) \geqslant 3 \mathrm{r}$ and so $\gamma_{\mathrm{dR}}^{*}\left(\mathrm{~K}_{\mathrm{r}, \mathrm{s}}\right)=3 \mathrm{r}$.

Proposition 10. For any connected graph G,

$$
\max \left\{\gamma_{\mathrm{dR}}(\mathrm{G}), \gamma_{\mathrm{edR}}(\mathrm{G})\right\} \leqslant \gamma_{\mathrm{dR}}^{*}(\mathrm{G}) \leqslant \gamma_{\mathrm{dR}}(\mathrm{G})+\gamma_{\mathrm{edR}}(\mathrm{G})
$$

The lower bound is sharp for stars $K_{1, n}(n \geqslant 2)$ and the upper bound is sharp for fan graph.
Proof. If f is a $\gamma_{\mathrm{dR}}(\mathrm{G})$-function and g is a $\gamma_{e d R}(G)$ - function, then the function $h: V \cup E \rightarrow\{0,2,3\}$ defined by $h(x)=f(x)$ for $x \in V$ and $h(x)=g(x)$ for $x \in E$, is clearly a mixed double Roman dominating function of G that implies $\gamma_{d R}^{*}(G) \leqslant \gamma_{\mathrm{dR}}(\mathrm{G})+\gamma_{\mathrm{edR}}(\mathrm{G})$.
To prove the lower bound, let f be a $\gamma_{\mathrm{d} R}^{*}(\mathrm{G})$-function. First we show that $\gamma_{\mathrm{dR}}(\mathrm{G}) \leqslant \gamma_{\mathrm{dR}}^{*}(\mathrm{G})$. Let $\mathrm{V}(\mathrm{G})=$ $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $\mathrm{E}\left(v_{i}\right)=\left\{v_{i} v_{j} \in \mathrm{E}(\mathrm{G}) \mid \boldsymbol{i}<\boldsymbol{j}\right\}$. Define $\mathrm{g}: \mathrm{V}(\mathrm{G}) \rightarrow\{0,2,3\}$ by $\mathrm{g}\left(v_{\mathrm{i}}\right)=\mathrm{f}\left(v_{\mathrm{i}}\right) \cup\left(\cup_{e \in \mathrm{E}\left(v_{i}\right)} \mathrm{f}(\mathrm{e})\right)$ for each $1 \leqslant i \leqslant n$. Clearly, g is DRDF of G of weight $w(f)$ that implies $\gamma_{d R}(G) \leqslant \gamma_{d R}^{*}(G)$. Now, we show that $\gamma_{e d R}(G) \leqslant \gamma_{d R}^{*}(G)$. Suppose that $M=\left\{x_{1} y_{1}, x_{2} y_{2}, \ldots, x_{r} y_{r}\right\}$ is maximum matching in G and $X=\left\{w_{1}, w_{2}, \ldots, w_{p}\right\}$ is the set consisting of all M-unsaturated vertices. Let e_{i} be an edge incident to W_{i} for $1 \leqslant i \leqslant p$ and define $h: E(G) \rightarrow\{0,2,3\}$ by $h\left(x_{i} y_{i}\right)=f\left(x_{i} y_{i}\right) \cup f\left(x_{i}\right) \cup f\left(y_{i}\right)$ for $1 \leqslant i \leqslant r$, $h\left(e_{j}\right)=f\left(e_{j}\right) \cup f\left(w_{j}\right)$ for $1 \leqslant j \leqslant p$ and $h(e)=f(e)$ otherwise. Clearly, h is EDRDF of G of weight $w(f)$ implying that $\gamma_{e d R}(G) \leqslant \gamma_{d R}^{*}(G)$. This complete the proof.

Proposition 11. If G is a graph and $e \in E(\bar{G})$, then

$$
\gamma_{\mathrm{dR}}^{*}(\mathrm{G})-3 \leqslant \gamma_{\mathrm{d} R}^{*}(\mathrm{G}+e) \leqslant \gamma_{\mathrm{d} R}^{*}(\mathrm{G})+2
$$

Proof. To prove the upper bound, let f be a $\gamma_{\mathrm{d} R}^{*}(\mathrm{G})$-function. Clearly, $\mathrm{g}: \mathrm{V}(\mathrm{G}) \cup \mathrm{E}(\mathrm{G}) \cup\{\mathrm{e}\} \rightarrow\{0,1,2,3\}$ defined by $g(e)=2$ and $g(x)=f(x)$ otherwise is a MDRDF of $G+e$ and hence $\gamma_{d R}^{*}(G+e) \leqslant \gamma_{d R}^{*}(G)+2$. To prove the lower bound, assume that $e=v w$ and f is a $\gamma_{d R}^{*}(G+e)$-function. First let $f(e)=0$. If $\mathrm{f}(v)=\mathrm{f}(w)=0$ or $0 \notin\{\mathbf{f}(v), \mathbf{f}(w)\}$, then clearly the function f , restricted to G is a MDRDF of G implying that $\gamma_{d R}^{*}(g)-3<\gamma_{d R}^{*}(G) \leqslant \gamma_{d R}^{*}(G+e)$. Assume, without loss of generality, that $f(w)=0$ and $f(v) \neq 0$. Then the function $g: V(G) \cup E(G) \rightarrow\{0,1,2,3\}$ defined by $g(w)=2$ and $g(x)=f(x)$ otherwise, is a MDRDF of G of weight $\gamma_{d R}^{*}(G+e)+2$ and hence $\gamma_{d R}^{*}(g)-3 \leqslant \gamma_{d R}^{*}(G+e)$. Now let $f(e) \neq 0$. Define $g: V(G) \cup E(G) \rightarrow\{0,1,2,3\}$ by $g(w)=f(w) \cup f(e), g(v)=f(v) \cup f(e)$ and $g(x)=f(x)$ otherwise. It is to see that g is a MDRDF of G of weight $\gamma_{d R}^{*}(G+e)+f(e)$ and so $\gamma_{d r}^{*}(g)-3 \leqslant \gamma_{d R}^{*}(G)-f(e) \leqslant \gamma_{d R}^{*}(G+e)$. This completes the proof.

Corollary 3. For any edge e in a graph G,

$$
\gamma_{\mathrm{dr}}^{*}(\mathrm{~g})-2 \leqslant \gamma_{\mathrm{dR}}^{*}(\mathrm{G}-\mathrm{e}) \leqslant \gamma_{\mathrm{dR}}^{*}(\mathrm{G})+3
$$

Proposition 12. For $n \geqslant 7$,

$$
\gamma_{\mathrm{dR}}^{*}\left(\mathrm{~K}_{\mathrm{n}}\right)=\left\{\begin{array}{lll}
\mathrm{n}+2 & \text { if } & \mathrm{n} \equiv 1,3(\bmod 4) \\
\mathrm{n}+3 & \text { if } & \mathrm{n} \equiv 0,2(\bmod 4)
\end{array}\right.
$$

Unless $\mathfrak{n} \leqslant 6$ in which cases $\gamma_{d R}^{*}\left(\mathrm{~K}_{3}\right)=4, \gamma_{\mathrm{dR}}^{*}\left(\mathrm{~K}_{4}\right)=6, \gamma_{\mathrm{dR}}^{*}\left(\mathrm{~K}_{5}\right)=6, \gamma_{\mathrm{dR}}^{*}\left(\mathrm{~K}_{6}\right)=8$.
Proof. Let $V\left(C_{n}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be the set of vertices of C_{n} and $Z=V\left(K_{n}\right) \cup E\left(K_{n}\right)$. Assume that $\mathrm{n} \leqslant 6$. Define $\mathrm{f}: \mathrm{Z} \rightarrow\{0,2,3\}$ by $\mathrm{f}\left(v_{1}\right)=\mathrm{f}\left(v_{2} v_{3}\right)=3$ if $\mathrm{n}=4$ and $\mathrm{f}\left(v_{1}\right)=\mathrm{f}\left(v_{2} v_{3}\right)=2$ for $\mathrm{n}=3$, $\mathrm{f}\left(v_{1}\right)=\mathrm{f}\left(v_{2} v_{3}\right)=\mathrm{f}\left(v_{4} v_{5}\right)=2$ if $\mathrm{n}=5$ and $\mathrm{f}\left(v_{1}\right)=\mathrm{f}\left(v_{4}\right)=\mathrm{f}\left(v_{2} v_{3}\right)=\mathrm{f}\left(v_{5} v_{6}\right)=2$ if $\mathrm{n}=6$. Now assume that $n \geqslant 7$. By Proposition 1, 2

$$
\gamma_{\mathrm{dR}}\left(\mathrm{~K}_{\mathrm{n}}\right)+\gamma_{\mathrm{edR}}\left(\mathrm{~K}_{\mathrm{n}-1}\right) \leqslant\left\{\begin{array}{lll}
n+2 & \text { if } & n \equiv 1,3(\bmod 4) \\
n+3 & \text { if } & n \equiv 0,2(\bmod 4)
\end{array}\right.
$$

Proposition 13. Let G be a connected graph of order $n \geqslant 2$, size m and $\Delta(G) \geqslant 1$. Then $\gamma_{d R}^{*}(G) \leqslant$ $2(m+n)-4 \Delta(G)+1$.

Proof. The result holds from $G=K_{2}$. Thus, we may assume that $\mathfrak{n} \geqslant 3$ and $\Delta \geqslant 2$. Let v be a vertex of maximum degree $\Delta(G)=k \geqslant 2$. To simplify notation for a set $S \subseteq V \cup E$ of a graph G, let $N_{m}[S]=$ $\bigcup_{v \in S} N_{m}[v]$, and define the function f_{s} by assigning 3 to every element of $S, 0$ every element in $N_{m}[S] \backslash S$ and 2 to all remaining elements in $V \cup E$, we note that f_{v} is a MDRDF for any set $v \in V \cup E$. Then, $\gamma_{\mathrm{dR}}^{*}(\mathrm{G}) \leqslant \boldsymbol{w}\left(\mathrm{f}_{v}\right)=2(\mathrm{~m}+\mathfrak{n}-2 \Delta(\mathrm{G})-1)+3=2(\mathrm{~m}+\mathfrak{n})-4 \Delta(\mathrm{G})+1$

Proposition 9 shows that the bound of Proposition 13 is sharp. A set $\mathrm{S} \subseteq \mathrm{V}(\mathrm{G})$ is a 2-packing set of G if $N[u] \cap N[v]=\emptyset$ holds for any two distinct vertices $u, v \in S$. The 2-packing number of G, denote $\rho(G)$, is defined as follow: $\rho(G)=\max \{|S|: S$ is a 2 -packing set of $G\}$.

Observation 4. Let G be a connected graph of order $\mathfrak{n} \geqslant 2$ and size m. Then

$$
\gamma_{d R}^{*}(G) \leqslant 2 m+2 n-(4 \delta(G)-1) \rho(G)
$$

Proof. Let $\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$ be a 2 -packing of G. Define $f: V \cup E \rightarrow\{0,1,2,3\}$ by $f\left(x_{i}\right)=3, f(x)=0$ for $x \in N\left(x_{i}\right)$ for $1 \leqslant i \leqslant k$ and $f(x)=2$ otherwise. It is easy to see that f is an MDRDF of G. Thus

$$
\begin{aligned}
\gamma_{\mathrm{d} R}^{*}(\mathrm{G}) & \leqslant w(f)=2\left(\mathrm{~m}+\mathrm{n}-\sum_{i=1}^{k}\left(2 \operatorname{deg}\left(x_{i}\right)+1\right)+3 k\right. \\
& =2 m+2 n-2 \sum_{i=1}^{k}\left(2 \operatorname{deg}\left(x_{i}\right)+1\right)+3 k \\
& \leqslant 2 m+2 n-2(2 \delta(G) k+k)+3 k \\
& \leqslant 2 m+2 n-(4 \delta(G)-1) k
\end{aligned}
$$

References

[1] H. Abdollahzadeh Ahangar, M. Chellai, S.M. Sheikholeslam, on the double Roman domination in graphs, Appl. Anal. Discrete Math. 10 (2017), 501-517. 1
[2] H. Abdollahzadeh Ahangar,Teresa W. Haynes, J.C. Valenzuela-Tripodoro, Mixed Roman Domination in Graphs, Math. Sci. Soc. (2015) 1
[3] H. Abdollahzadeh Ahangar,L. Asgarsharghi, S.M. Sheikholeslami, L. Volkmann, Signed mxed Roman domination numbers in graphs, J. Comb. Obtim. (2015) 1
[4] M. Valinavaz, On the edge double Roman domination number of graphs, Commun. Combin. Sci (1)(2021),113-119. 1
[5] M. Valinavaz, Results on the edge double Roman domination number of a graph, Commun. Combin. Sci (1)(2021),104-112. 1
[6] M. Valinavaz, On the edge double Roman domination number of planar graph, Commun. Combin. Sci (1)(2021),97-103. 1
[7] R.A. Beeler, T.W. Haynes, and S.T. Hedetniemi, Double Roman Domination, Discrete Apple. Math. 211(2016), 23-29. 1, 2
[8] E.J. Cockayne, S. Goodman, S.A. Hedetniemi, linear algorithm for the domination number of a tree,Inf. Process. Lett. 4,(1975) 41-44 1
[9] P. Erdös, A. Meir, On total matching numbers and total covering numbers of complementary graphs. Discret. Math. 19,(1977) 229-233 1
[10] P. Hatami, An approximation algorithm for the total covering problem. Discuss. Math. Graph Theory 27(3),(2007) 553-558 1
[11] J.K. Lan, G.J. Chang, On the mixed domination problem in graphs. Theor. Comput. Sci.476,(2013) 84-93 1
[12] Y. Zhao, L. Kang, M.Y. Sohn, The algorithmic complexity of mixed domination in graphs. Theor. Comput. Sci. 412, (2011) 2387-2392. 1

[^0]: * Corresponding author

 Email address: mina.valinavaz@gmail.com (Mina Valinavaz)
 Received: November 3, 2022 Revised: November 10, 2022 Accepted: November 21, 2022

